The Particle Swarm Optimization Based on Mahalanobis Distance
نویسندگان
چکیده
منابع مشابه
Fitness-distance-ratio based particle swarm optimization
This paper presents a modification of the particle swarm optimization algorithm (PSO) intended to combat the problem of premature convergence observed in many applications of PSO. The proposed new algorithm moves particles towards nearby particles of higher fitness, instead of attracting each particle towards just the best position discovered so far by any particle. This is accomplished by usin...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملCooperative Particle Swarm Optimization in Distance-Based Clustered Groups
TCPSO (Two-swarm Cooperative Particle Swarm Optimization) has been proposed by Sun and Li in 2014. TCPSO divides the swarms into two groups with different migration rules, and it has higher performance for high-dimensional nonlinear optimization problems than traditional PSO and other modified method of PSO. This paper proposes a particle swarm optimization by modifying TCPSO to avoid inappropr...
متن کاملParticle Swarm Optimization Based Reactive Power Optimization
Reactive power plays an important role in supporting the real power transfer by maintaining voltage stability and system reliability. It is a critical element for a transmission operator to ensure the reliability of an electric system while minimizing the cost associated with it. The traditional objectives of reactive power dispatch are focused on the technical side of reactive support such as ...
متن کاملA novel particle swarm optimization algorithm based on particle migration
Inspired by the migratory behavior in the nature, a novel particle swarm optimization algorithm based on particle migration (MPSO) is proposed in this work. In this new algorithm, the population is randomly partitioned into several sub-swarms, each of which is made to evolve based on particle swarm optimization with time varying inertia weight and acceleration coefficients (LPSO-TVAC). At perio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Engineering and Technology Research
سال: 2017
ISSN: 2475-885X
DOI: 10.12783/dtetr/mcee2016/6435